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Outline of this talk

Background of Data Reservoir Project
Observations at BWC2002

Transmission Rate Controlled TCP for DR

o Software approach
IPG tuning
Clustered Packet Spacing
o NIC hardware approach
TCP-aware NIC

Results at BWC2003



Obijectives of Data Reservoir

Sharing scientific data between distant research
Institutes
o Physics, astronomy, earth science, simulation data

Very high-speed single file transfer on Long Fat pipe
Network (LFN)

High utilization of available bandwidth

OS and filesystem transparency

o Storage level data sharing
High speed iISCSI protocol on TCP



Features of Data Reservolr

Data sharing in low-level protocol
o Use of ISCSI protocol
o Efficient disk to disk data transfer

Multi-level striping for performance scalability

Local file accesses through LAN

Global disk transfer through WAN
o Unified by iISCSI protocol
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Observations at BWC2002




Results of SC2002 BWC

550 Mbps, 91% utilization
o Bottleneck: OC-12, RTT: 200 ms

Parallel “normal” TCP streams
24 nodes x 2 streams

“Most Efficient Use of Avalilable Bandwidth”
award



Observations of SC2002 BWC

But...
o Poor performance per stream

Packet loss hits a stream too early during slow start
TCP congestion control recovers window too slowly

o Unbalance among parallel streams

Packet loss occurs asynchronously & unfairly
Slow streams can’t catch up fast streams



Transmission rate affects performance

= Transmission rate is important

o Fast Ethernet > GbE
= Fast Ethernet is “ultra” stable
= GDbE is “too” unstable and poor on average
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Slow start makes burst

Slow start

o Double window of data every RTT
o Send whole window burstly at the beginning of every RTT

o Packet loss occurs even though huge idle period
Packets sent in 20 ms, nothing happen in 180 ms
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What'’s problems to solve?

TCP/GDbE on real LFN is quite unstable
o Bursty transmission of packets

Next Generation TCP

o Aggressive but gentle window control algorithm
HighSpeed TCP, Scalable TCP, FAST TCP

o Incorporated “rate control” feature

Reducing needless packet loss on underutilized network
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Transmission Rate Controlled TCP




Transmission rate control for TCP

= ldeal Story
o Transmitting a packet

every RTT/cwnd

o 24 us interval for 500Mbps
= MTU 1500B

o High load for software only
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IPG tuning

Inter Packet Gap (IPG) of Ethernet MAC layer

o A time gap between packets
o0 8 1023B, 1B (8ns) step in case of Intel 1000

o TCP stream

941 Mbps 567 Mbps

o Fine grain, low jitter, low overhead
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IPG tuning on GbE

Bottleneck is 596 Mbps
o RTT: 200 ms

Improve in Max/Avg case using
IPG 1023B

o Transmission Rate <
Bottleneck bandwidth

Improve in Max case using
IPG 512B

No effect in Min case
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Clustered Packet Spacing (1)

Insert transmission interval
o Only during initial slow start

o Using kernel timer In TCP stack of Linux kernel
Resolution: 1ms (Linux 2.6), 10ms (Linux 2.4)
0 Threshold value to transit to normal TCP
o Coarse grain, low overhead
Spacing window of under 500 packets
Split burst into small fractions
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\ Clustered Packet Spacing (2)

= RTT/cwnd > threshold
o Rate control rules transmission timing

= RTT/cwnd < threshold
o Normal TCP congestion control takes over
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Transmission Rate [pkts/ms]

Slow start of CPS Linux 2.6

Rate control while cwnd/RTT > 1ms
o Blue shaded part
o Split burst into 200 small bursts
o Each small bursts is limited up to 80 packets
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CPS TCP

CPS can make cwnd
bigger when initial slow
start

Current slow start Is too
aggressive

o Causing packet losses
difficult to recover using
Fast Retransmit
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TCP-aware NIC

Recognizing TCP parameters per stream

a cwnd

o RTT

Adjusting IPG for flow-level rate dynamically
o IPG =RTT / cwnd — PacketSize / BW

Mixing multiple streams
o Advantage against IPG tuning

Real-time scheduling of packet transmission
o Resolution of micro-, nanosecond order
a Multi-interval deadlines

Hardware’s matter to deal with
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Functional diagram TCP-aware NIC
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Simulation evaluation

Parameter

o One-way Latency (ms)
2,10, 25, 50, 100, 150

o IPG

8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384

Dynamic IPG
Packet Loss Rate
o Wire Loss Rate : 0.001%
o Increased when remaining buffer is small
o Increased when transmission is bursty

Single stream
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Network configuration
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\ Dynamic/static optimization of IPG (1)

= Throughput
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\ Dynamic/static optimization of IPG (1)

= Normalized standard deviation

0.6

05
[
i
g O Default
>
2 04 IPG
= (8byte)
3 B Statically
§ 03 Optimized
n IPG
§ O Dynamic
< 0.2 IPG
£
o
=z

0.1

10 25 50 100 150
One-way Latency(ms)

local
26



Dynamic IPG optimization

Gains higher throughput
2 When long latency (> 25 ms)
than “Default” and “Statically Optimized”

2 When small latency
than “Default”

Gains lower throughput

o When small latency

than “Statically Optimized”
o Degraded 3% on 2 ms latency, 21% on 10 ms latency

Can Stabilize throughput

o Smaller normalized standard deviation
than “Default” and “Statically Optimized”
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Results at BWC2003




OC-48 x 3
GbE x 1
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Network configuration (During SC2003)
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'SC2003 BWC

Bandwidth Over Time (Current Maox Dotopoint: T.00 Gb/sec)

o

il IPG-tuned

e Cooperative Parallel

i. Streams Parallel Streams

E 7

E 'Y

& .i"-!

=

i 7 7 -""m —

i l:_ / /: | I Bondwidth Over Time [Current Max Dotapoint: 7.54 Gbho/sec)

: “., 'ﬁﬁ_ _ ! [ Br.

iu | \ | :' /E .

—_—— el P e S————
Time freconds) / 5‘1 :‘ N I :I'-."- ! Bl
- UTokpa incaming - UTakps Guipaing ¥ |- | 1. | | |

T, T
T Comet TCP
iu ~+———{__nhttp://www.comet-can jp/
i —"
i . i | i F

Time jreconds)
= UTokpa: incamimp U Tokpe: Sutpaing
31
http://scinet.supercomp.org/2003/bwc/results/



Results of SC2003 BWC

SC2003 BWC

o Bottleneck: 2 x OC-48, OC48 (3 x GbE), GbE
o RTT: 335 ms, 326 ms, 292 ms

Parallel IPG-tuned TCP streams

o 16 nodes X 4 streams
o Maximum throughput: 5.42 Gbps

“Distance x Bandwidth Product and Network
Technology” award



Our contribution

Highlight importance of rate control for TCP
o Alleviating bursty behavior on GbE
o Reducing needless packet loss on underutilized network

Demonstrate real data transfer on real LFN

o Disk-to-Disk file transfer

Utilization of low-level data sharing
0 Using iSCSI protocol

Transmission rate control in TCP stack
Parallel streams
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Conclusion

Transmission Rate Controlled TCP
o Stabilize and improve performance

IPG tuning
o Static, low overhead, easy to use

Clustered Packet Spacing
o Flexible, feasible with little overhead

TCP-aware NIC

o Dynamic, low overhead
o Adaptable to heterogeneous streams simultaneously
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\ BWC 2003 Experiment is supported by
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